教材内容
涉及多个对数的表达式通常可以重新排列或简化。对数法则是对数运算的基础,掌握这些法则对于解决复杂的对数问题至关重要。
设 \(\log_a x = m\) 和 \(\log_a y = n\),则:
\(a^m = x\) 和 \(a^n = y\)
将这两个幂相乘:\(a^m \times a^n = a^{m+n} = xy\)
因此:\(\log_a(xy) = m + n = \log_a x + \log_a y\)
对数法则包括三个基本法则:
1. 乘法法则:\(\log_a x + \log_a y = \log_a(xy)\)
2. 除法法则:\(\log_a x - \log_a y = \log_a\left(\frac{x}{y}\right)\)
3. 幂法则:\(\log_a(x^k) = k\log_a x\)
对数法则 (Laws of Logarithms):
\(\log_a x + \log_a y = \log_a(xy)\) (乘法法则)
\(\log_a x - \log_a y = \log_a\left(\frac{x}{y}\right)\) (除法法则)
\(\log_a(x^k) = k\log_a x\) (幂法则)
题目:将以下表达式写成单个对数:
a) \(\log_3 6 + \log_3 7\)
b) \(\log_2 15 - \log_2 3\)
c) \(2\log_5 3 + 3\log_5 2\)
解答:
a) \(\log_3 6 + \log_3 7 = \log_3(6 \times 7) = \log_3 42\)
b) \(\log_2 15 - \log_2 3 = \log_2\left(\frac{15}{3}\right) = \log_2 5\)
c) \(2\log_5 3 + 3\log_5 2 = \log_5 3^2 + \log_5 2^3 = \log_5 9 + \log_5 8 = \log_5(9 \times 8) = \log_5 72\)
题目:用 \(\log_a x\)、\(\log_a y\) 和 \(\log_a z\) 表示:
a) \(\log_a(x^2yz^3)\)
b) \(\log_a\left(\frac{x}{y^3}\right)\)
c) \(\log_a\left(\frac{x\sqrt{y}}{z}\right)\)
解答:
a) \(\log_a(x^2yz^3) = \log_a(x^2) + \log_a y + \log_a(z^3) = 2\log_a x + \log_a y + 3\log_a z\)
b) \(\log_a\left(\frac{x}{y^3}\right) = \log_a x - \log_a(y^3) = \log_a x - 3\log_a y\)
c) \(\log_a\left(\frac{x\sqrt{y}}{z}\right) = \log_a(x\sqrt{y}) - \log_a z = \log_a x + \log_a\sqrt{y} - \log_a z = \log_a x + \frac{1}{2}\log_a y - \log_a z\)
题目:解方程 \(\log_{10} 4 + 2\log_{10} x = 2\)
解答:
\(\log_{10} 4 + 2\log_{10} x = 2\)
\(\log_{10} 4 + \log_{10} x^2 = 2\) (使用幂法则)
\(\log_{10}(4 \times x^2) = 2\) (使用乘法法则)
\(\log_{10}(4x^2) = 2\)
\(4x^2 = 10^2 = 100\)
\(x^2 = 25\)
\(x = 5\) (注意:\(x = -5\) 不是解,因为 \(\log_{10} x\) 只对正数定义)
题目:解方程 \(\log_3(x + 11) - \log_3(x - 5) = 2\)
解答:
\(\log_3(x + 11) - \log_3(x - 5) = 2\)
\(\log_3\left(\frac{x + 11}{x - 5}\right) = 2\) (使用除法法则)
\(\frac{x + 11}{x - 5} = 3^2 = 9\)
\(x + 11 = 9(x - 5)\)
\(x + 11 = 9x - 45\)
\(56 = 8x\)
\(x = 7\)
在使用对数法则时要注意:
通过本节的学习,你应该能够: